110 research outputs found

    Security and Privacy for the Internet of Things

    Get PDF
    The Internet of Things (IoT) represents a great opportunity to connect people, information, and things, which will in turn cause a paradigm shift in the way we work, interact, and think. The IoT is envisioned as the enabling technology for smart cities, power grids, health care, and control systems for critical installments and public infrastructure. This diversity, increased control and interaction of devices, and the fact that IoT systems use public networks to transfer large amounts of data make them a prime target for cyber attacks. In addition, IoT devices are usually small, low cost and have limited resources. Therefore, any protocol designed for IoT systems should not only be secure but also efficient in terms of usage of chip area, energy, storage, and processing. This presentation will start by highlighting the unique security requirements of IoT devices and the inadequacy of existing security protocols and techniques of the Internet in the context to IoT systems. Next, we will focus on security solutions for the IoT, with special focus on protection against physical and side channel attacks. In particular, we will focus on mutual authentication protocols for IoT devices based on security primitives that exploit hardware level characteristics of IoT devices

    Lightweight and privacy-friendly spatial data aggregation for secure power supply and demand management in smart grids

    Get PDF
    The concept of smart metering allows real-time measurement of power demand which in turn is expected to result in more efficient energy use and better load balancing. However, finely granular measurements reported by smart meters can lead to starkly increased exposure of sensitive information, including various personal attributes and activities. Even though several security solutions have been proposed in recent years to address this issue, most of the existing solutions are based on publickey cryptographic primitives such as homomorphic encryption, elliptic curve digital signature algorithms (ECDSA), etc. which are ill-suited for the resource constrained smart meters. On the other hand, to address the computational inefficiency issue, some masking-based solutions have been proposed. However, these schemes cannot ensure some of the imperative security properties such as consumer’s privacy, sender authentication, etc. In this paper, we first propose a lightweight and privacyfriendly masking-based spatial data aggregation scheme for secure forecasting of power demand in smart grids. Our scheme only uses lightweight cryptographic primitives such as hash functions, exclusive-OR operations, etc. Subsequently, we propose a secure billing solution for smart grids. As compared to existing solutions, our scheme is simple and can ensure better privacy protection and computational efficiency, which are essential for smart grids

    An efficient data aggregation scheme for privacy-friendly dynamic pricing-based billing and demand-response management in smart grids

    Get PDF
    Smart grids take advantage of information and communication technologies to achieve energy efficiency, automation and reliability. These systems allow two-way communications and power flow between the grid and consumers. However, these bidirectional communications introduce several security and privacy threats to consumers. One of the open challenges in this context is user privacy when smart meters are used to capture fine-grained energy usage information. Although considerable research has been carried out in this direction, most of the existing solutions invariably introduce computational complexity and overhead, which makes them infeasible for resource constrained smart meters. In this paper, we propose a privacy-friendly and efficient data aggregation scheme (EDAS) for dynamic pricing based billing and demand-response management in smart grids. To the best of our knowledge, this is the first paper to address privacy in the context of billing under dynamic electricity pricing. Security and performance analyses show that the proposed scheme offers better privacy protection for electric meter reading aggregation and computational efficiency, as compared to existing schemes

    Privacy-aware authenticated key agreement scheme for secure smart grid communication

    Get PDF
    Information and Communication Technologies (ICT) are one of the underpinning platforms of smart grids, facilitating efficient grid management and operation, optimization of resource utilization, as well as enable new products, features, and services. However, this interconnection of grid technology with ICT leads to various security challenges in the power grid. One such concern is the tampering of usage data from smart meters which may result not only in incorrect billing, but also in incorrect decisions related to demand and supply management. In addition to network based cyber attacks, smart meters are also susceptible to physical attacks since they are installed in customer premises without hardware protection mechanisms. In this paper, we propose a novel privacy-aware authenticated key agreement scheme which can not only ensure secure communication between the smart meters and the service provider, but also the physical security of smart meters. In this regard, we utilize the lightweight cryptographic primitives such as Physically Uncloneable Functions (PUFs) and one-way hash function, etc. Hence, the proposed scheme is suitable even for the resource constrained smart meters

    Characterization of Single Cycle CA and its Application in Pattern Classification

    Get PDF
    AbstractThe special class of irreversible cellular automaton (CA) with multiple attractors is of immense interest to the CA researchers. Characterization of such a CA is the necessity to devise CA based solutions for diverse applications. This work explores the essential properties of CA attractors towards characterization of the 1-dimensional cellular automata with point states (single length cycle attractors). The concept of Reachability Tree is introduced for such characterization. It enables identification of the pseudo-exhaustive bits (PE bits) of a CA defining its point states. A theoretical framework has been developed to devise schemes for synthesizing a single length cycle multiple attractor CA with the specific set of PE bits. It also results in a linear time solution while synthesizing a CA for the given set of attractors and its PE bits. The experimentation establishes that the proposed CA synthesis scheme is most effective in designing the efficient pattern classifiers for wide range of applications

    An Effective LSTM-DDPM Scheme for Energy Theft Detection and Forecasting in Smart Grid

    Full text link
    Energy theft detection (ETD) and energy consumption forecasting (ECF) are two interconnected challenges in smart grid systems. Addressing these issues collectively is crucial for ensuring system security. This paper addresses the interconnected challenges of ETD and ECF in smart grid systems. The proposed solution combines long short-term memory (LSTM) and a denoising diffusion probabilistic model (DDPM) to generate input reconstruction and forecasting. By leveraging the reconstruction and forecasting errors, the system identifies instances of energy theft, with the methods based on reconstruction error and forecasting error complementing each other in detecting different types of attacks. Through extensive experiments on real-world and synthetic datasets, the proposed scheme outperforms baseline methods in ETD and ECF problems. The ensemble method significantly enhances ETD performance, accurately detecting energy theft attacks that baseline methods fail to detect. The research offers a comprehensive and effective solution for addressing ETD and ECF challenges, demonstrating promising results and improved security in smart grid systems

    Design of Efficient Full Adder in Quantum-Dot Cellular Automata

    Get PDF
    Further downscaling of CMOS technology becomes challenging as it faces limitation of feature size reduction. Quantum-dot cellular automata (QCA), a potential alternative to CMOS, promises efficient digital design at nanoscale. Investigations on the reduction of QCA primitives (majority gates and inverters) for various adders are limited, and very few designs exist for reference. As a result, design of adders under QCA framework is gaining its importance in recent research. This work targets developing multi-layered full adder architecture in QCA framework based on five-input majority gate proposed here. A minimum clock zone (2 clock) with high compaction (0.01 μm2) for a full adder around QCA is achieved. Further, the usefulness of such design is established with the synthesis of high-level logic. Experimental results illustrate the significant improvements in design level in terms of circuit area, cell count, and clock compared to that of conventional design approaches

    AIDPS:Adaptive Intrusion Detection and Prevention System for Underwater Acoustic Sensor Networks

    Full text link
    Underwater Acoustic Sensor Networks (UW-ASNs) are predominantly used for underwater environments and find applications in many areas. However, a lack of security considerations, the unstable and challenging nature of the underwater environment, and the resource-constrained nature of the sensor nodes used for UW-ASNs (which makes them incapable of adopting security primitives) make the UW-ASN prone to vulnerabilities. This paper proposes an Adaptive decentralised Intrusion Detection and Prevention System called AIDPS for UW-ASNs. The proposed AIDPS can improve the security of the UW-ASNs so that they can efficiently detect underwater-related attacks (e.g., blackhole, grayhole and flooding attacks). To determine the most effective configuration of the proposed construction, we conduct a number of experiments using several state-of-the-art machine learning algorithms (e.g., Adaptive Random Forest (ARF), light gradient-boosting machine, and K-nearest neighbours) and concept drift detection algorithms (e.g., ADWIN, kdqTree, and Page-Hinkley). Our experimental results show that incremental ARF using ADWIN provides optimal performance when implemented with One-class support vector machine (SVM) anomaly-based detectors. Furthermore, our extensive evaluation results also show that the proposed scheme outperforms state-of-the-art bench-marking methods while providing a wider range of desirable features such as scalability and complexity
    • …
    corecore